Qubit metrology for building a fault-tolerant quantum computer
نویسندگان
چکیده
منابع مشابه
Qubit metrology for building a fault-tolerant quantum computer
Recent progress in quantum information has led to the start of several large national and industrial efforts to build a quantum computer. Researchers are now working to overcome many scientific and technological challenges. The program's biggest obstacle, a potential showstopper for the entire effort, is the need for high-fidelity qubit operations in a scalable architecture. This challenge aris...
متن کاملBattling Decoherence: the Fault-tolerant Quantum Computer
THE FAULT-TOLERANT QUANTUM COMPUTER I carried by a quantum system has notoriously weird properties. Physicists and engineers are now learning how to put that weirdness to work. Quantum computers, which manipulate quantum states rather than classical bits, may someday be able to perform tasks that would be inconceivable with conventional digital technology. (See the article by Charles H. Bennett...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملA fault-tolerant addressable spin qubit in a natural silicon quantum dot
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolongin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Quantum Information
سال: 2015
ISSN: 2056-6387
DOI: 10.1038/npjqi.2015.5